New Metal Means a Wave of Additive Manufacturing Technologies (Not Limp Bizkit)

After 20 years of iteration on the same basic additive-manufacturing technologies for metal, a new wave of innovation is emerging. Lower-cost, safer processes are replacing the old ways of doing things, offering vastly different material properties through resolution, surface quality, and design freedom.

But first, a little 3D-printing history: Since the invention of the selective laser melting (SLM) process at the Fraunhofer Institute in 1995, metal additive manufacturing has relied primarily on three processes: the first, and most common, selectively melts a cross-section of a metal powder with a laser or electron beam, layer by layer, to build up a metal object in a range of alloys. The second, a lens/directed-energy approach, blows the metal powder into the path of the laser. And in the third, a powder-bed approach, the metal powders are glued together, then sintered to achieve metal-like properties.

As transformative as these processes have been in enabling custom and complex parts, they aren’t perfect: Using metal powder for additive manufacturing means handling potentially dangerous materials, and thermal-distortion issues have seen many prints relegated to the bin of broken dreams.

This article originally appeared on Autodesk’s Redshift, a site dedicated to inspiring designers, engineers, builders, and makers. Continue reading the article:

Photo Credit: Courtesy XJet